CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
نویسندگان
چکیده
Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF.
منابع مشابه
Learning the human chromatin network from all ENCODE ChIP-seq data
Introduction: A cell’s epigenome arises from interactions among regulatory factors — transcription factors, histone modifications, and other DNA-associated proteins — co-localized at particular genomic regions. Identifying the network of interactions among regulatory factors, the chromatin network, is of paramount importance in understanding epigenome regulation. Methods: We developed a novel c...
متن کاملGenome analysis GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding
Motivation: The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies. Results: We present GERV (generative evaluation of regulatory va...
متن کاملGERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding
MOTIVATION The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies. RESULTS We present GERV (generative evaluation of regulatory va...
متن کاملImputation for transcription factor binding predictions based on deep learning
Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentag...
متن کاملUnderstanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems
The availability of omic data produced from international consortia, as well as from worldwide laboratories, is offering the possibility both to answer long-standing questions in biomedicine/molecular biology and to formulate novel hypotheses to test. However, the impact of such data is not fully exploited due to a limited availability of multi-omic data integration tools and methods. In this p...
متن کامل